Utilization of industrial waste as a source of nutrients for microbial growth an update

Authors

  • Shadan Nabiyev Department of Pharmacy, state University
  • Esfandyar Latif Department of Pharmacy, state University
  • Zarrina Korhonen Department of Pharmacy, state University

Abstract

Utilization of industrial waste as a source of nutrients for microbial growth an update. To avoid wasting these by-products, various disposal methods have been applied including, ensilation, fermentation, hydrolysate and fish oil production. Interestingly, fish by-products provide an excellent nutrient source for microbial growth useful in enzyme production process, which is largely governed by the cost related to the growth media. Fish wastes (heads, viscera, chitinous material, wastewater, etc.) were prepared and tested as growth substrates for microbial enzymes production such as protease, lipase, chitinolytic and ligninolytic enzymes. 

References

Awarenet (2004) Handbook for the prevention and minimization of waste and valorization of by-products in European agro-food industries. Agro-food waste minimization and reduction network (AWARENET). Grow Programme, European Commission, pp 1–7

Banerjee UC, Agnihotri R, Bhattacharyya BC. Purification of alkaline protease of Rhizopus oryzae by foam fractionation. Bioprocess Eng. 1993;9:245–248. doi: 10.1007/BF01061529. [Cross Ref]

Banik RM, Prakash M. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol Res. 2004;159:135–140. doi: 10.1016/j.micres.2004.01.002. [PubMed] [Cross Ref]

Bartolome B, Gomez-Cordoves C, Sancho AI, Diez N, Ferreira P, Soliveri J, Copa-Patino J. Growth and release of hydroxycinnamic acids from brewer’s spent grain by Streptomyces avermitilis CECT3339. Enzym Microb Technol. 2003;32:140–144. doi: 10.1016/S0141-0229(02)00277-6. [Cross Ref]

Batista I (1999) Recovery of proteins from fish waste products by alkaline extraction. Eur Food Res Technol 210:84–89

Ben Rebah F, Frikha F, Kammoun W, Belbahri L, Gargouri Y, Miled N. Culture of Staphylococcus xylosus in fish processing by-product-based media for lipase production. Lett Appl Microbiol. 2008;47:549–554. doi: 10.1111/j.1472-765X.2008.02465.x. [PubMed] [Cross Ref]

Birnbaum LS. Endocrine effects of prenatal exposure to PCBs, dioxins, and other xenobiotics: implications for policy and future research. Environ Health Perspect. 1994;102:676–679. doi: 10.1289/ehp.94102676. [PMC free article] [PubMed] [Cross Ref]

Blanco M, Sotelo CG, Chapela MJ, Perez-Martin RI. Towards sustainable and efficient use of fishery resources: present and future trends. Trends Food Sci Technol. 2006;18:29–36. doi: 10.1016/j.tifs.2006.07.015. [Cross Ref]

Bozzano A, Sarda F. Fishery discard consumption rate and scavenging activity in the northwestern Mediterranean Sea. ICES J of Mar Sci. 2002;59:15–28. doi: 10.1006/jmsc.2001.1142. [Cross Ref]

Chang WT, Chen CS, Wang SL. An antifungal chitinase produced by Bacillus cereus with shrimp and crab shell powder as a carbon source. Curr Microbiol. 2003;47:102–108. doi: 10.1007/s00284-002-3955-7. [PubMed] [Cross Ref]

Chen CC, Chaung HC, Chung MY, Huang LT. Menhaden fish oil improves spatial memory in rat pups following recurrent pentylenetetrazole-induced seizures. Epilepsy Behav. 2006;8:516–521. doi: 10.1016/j.yebeh.2006.01.004. [PubMed] [Cross Ref]

Coello N, Brito L, Nonus M. Biosynthesis of l-lysine by Corynebacterium glutamicum grown on fish silage. Bioresour Technol. 2000;73:221–225. doi: 10.1016/S0960-8524(99)00170-4. [Cross Ref]

Dahiya N, Tewari R, Tiwari RP, Hoondal GS. Production of an antifungal chitinase from Enterobacter sp. NRG4 and its application in protoplast production. World J Microbiol Biotechnol. 2005;21:1611–1616. doi: 10.1007/s11274-005-8343-6. [Cross Ref]

Dahiya N, Tewari R, Hoondal GS. Biotechnological aspects of chitinolytic enzymes: a review. Appl Microbiol Biotechnol. 2006;71:773–782. doi: 10.1007/s00253-005-0183-7. [PubMed] [Cross Ref]

Danzo BJ. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ Health Perspect. 1997;105:294–301. doi: 10.1289/ehp.97105294. [PMC free article] [PubMed] [Cross Ref]

De Azeredo LAI, Freire DMG, Soares RMA, Leite SGF, Coelho RRR. Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzym Microb Technol. 2004;34:354–358. doi: 10.1016/j.enzmictec.2003.11.015. [Cross Ref]

Ellouz Y, Bayoudh A, Kammoun S, Gharsallah N, Nasri M. Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresour Technol. 2001;80:49–51. doi: 10.1016/S0960-8524(01)00057-8. [PubMed] [Cross Ref]

Esakkiraj P, Immanuel G, Sowmya SM, Iyapparaj P, Palavesam A. Evaluation of protease-producing ability of fish gut isolate Bacillus cereus for aqua feed. Food Bioprocess Technol. 2009;2:383–390. doi: 10.1007/s11947-007-0046-6. [Cross Ref]

Esakkiraj P, Austin Jeba Dhas G, Palavesam A, Immanuel G. Media preparation using tuna-processing wastes for improved lipase production by shrimp gut isolate Staphylococcus epidermidis CMST Pi2. Appl Biochem Biotechnol. 2010;160:1254–1265. doi: 10.1007/s12010-009-8632-x. [PubMed] [Cross Ref]

Esakkiraj P, Rajkumarbharathi M, Palavesam A, Immanuel G. Lipase production by Staphylococcus epidermidis CMST-Pi 1 isolated from the gut of shrimp Penaeus indicus. Ann Microbiol. 2010;60:37–42. doi: 10.1007/s13213-009-0003-x. [Cross Ref]

Faid M, Zouiten A, Elmarrakchi A, Achkari-Begdouri A. Biotransformation of fish waste into a stable feed ingredient. Food Chem. 1997;60:13–18. doi: 10.1016/S0308-8146(96)00291-9. [Cross Ref]

La situation mondiale des pêches et de l’aquaculture 2006. Rome: Département des pêches et de l’aquaculture; 2007.

Frost GM, Moss DA (1987) Production of enzymes by fermentation. In: Rehm HJ, Reed G, Kennedy JF (eds) Biotechnology. vol 7a, VCH, Weinheim, pp 65–211

Fujiwara N, Yamamoto K. Decomposition of gelatin layers on X-ray films by the alkaline protease from Bacillus sp. Hakkokogaku. 1987;65:531–534.

Gao MT, Hirata M, Toorisaka E, Hano T. Acid-hydrolysis of fish wastes for lactic acid fermentation. Bioresour Technol. 2006;97:2414–2420. doi: 10.1016/j.biortech.2005.10.002. [PubMed] [Cross Ref]

Gassara F, Brar SK, Tyagi RD, Verma M, Surampalli RY. Screening of agro-industrial wastes to produce ligninolytic enzymes by Phanerochaete chrysosporium. Biochem Eng J. 2010;49:388–394. doi: 10.1016/j.bej.2010.01.015. [Cross Ref]

Ghorbel S, Soussi N, Ellouz YT, Duffosse L, Guerard F, Nazri M. Preparation and testing of Sardinella protein hydrolysate as nitrogen source for extracellular lipase production by Rhizopus oryzae. World J Microbiol Biotechnol. 2005;21:33–38. doi: 10.1007/s11274-004-1556-2. [Cross Ref]

Gupta R, Beg QK, Khan S, Chauhan B. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol. 2002;60:381–395. doi: 10.1007/s00253-002-1142-1. [PubMed] [Cross Ref]

Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical proprieties. Appl Microbiol Biotechnol. 2004;64:763–781. doi: 10.1007/s00253-004-1568-8. [PubMed] [Cross Ref]

Hacking AJ. Economic aspects of biotechnology. Cambridge: Cambridge University Press; 1987. p. 317.

Haddar A, Fakhfakh-Zouari N, Hmidet N, Frikha F, Nasri M, Sellami-Kamoun A. Low-cost fermentation medium for alkaline protease production by Bacillus mojavensis A21 using hulled grain of wheat and Sardinella peptone. J Biosc Bioeng. 2010;110:288–294. doi: 10.1016/j.jbiosc.2010.03.015. [PubMed] [Cross Ref]

Hasan F, Shah AA, Hameed A. Industrial applications of microbial lipases. Enzym Microb Technol. 2006;39:235–251. doi: 10.1016/j.enzmictec.2005.10.016. [Cross Ref]

Hassan TE, Heath JL. Biological fermentation of fish waste for potential use in animal and poultry feeds. Agric Wastes. 1986;15:1–15. doi: 10.1016/0141-4607(86)90122-8. [Cross Ref]

Itoh Y, Kawase T, Nikajdou N, Fukada H, Mitsutomi M, Watanabe T, Itoh Y. Functional analysis of the chitin binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Biosci Biotechnol Biochem. 2002;66:1084–1092. doi: 10.1271/bbb.66.1084. [PubMed] [Cross Ref]

Jacob N, Prema P. Influence of mode of fermentation on production of polygalacturonase by a novel strain of Streptomyces lydicus. Food Technol Biotechnol. 2006;44:263–267.

Joo HS, Chang CS. Production of protease from a new alkalophilic Bacillus sp I-312 grown on soybean meal: optimization and some properties. Proc Biochem. 2005;40:1263–1270. doi: 10.1016/j.procbio.2004.05.010. [Cross Ref]

Kacem M, Sellami M, Kammoun W, Frikha F, Miled N, Ben Rebah F. Seasonal variations of chemical composition and fatty acid profiles of viscera of three marine species from the Tunisian coast. J Aquat Food Prod Technol. 2011;20:233–246. doi: 10.1080/10498850.2011.560365. [Cross Ref]

Karim AA, Bhat R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids. 2009;23:563–576. doi: 10.1016/j.foodhyd.2008.07.002. [Cross Ref]

Kim SK, Mendis E. Bioactive compounds from marine processing by-products—a review. Food Res Int. 2006;39:383–393. doi: 10.1016/j.foodres.2005.10.010. [Cross Ref]

Kim YJ, Kim HJ, No JK, Chung HY, Fernandes G. Anti-inflammatory action of dietary fish oil and calorie restriction. Life Sci. 2006;78:2523–2532. doi: 10.1016/j.lfs.2005.10.034. [PubMed] [Cross Ref]

Kirk TK, Farrell RL. Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol. 1987;41:465–501. doi: 10.1146/annurev.mi.41.100187.002341. [PubMed] [Cross Ref]

Krieg RN, Holt JG (1984) Bergey's manual of systematic Bacteriology, vol 1. Williams and Wilkins Company, Baltimore, USA, pp 308–429

Downloads

Published

2013-06-30

Issue

Section

Articles