SYNTHESIS OF PRECURSORS OF ANTIOSTEOPOROTIC AGENTS AND ITS QSAR STUDIES ON EGFR RECEPTOR INHIBITORS

Authors

  • Arvind Kumar Shrivastava United Institute of Pharmacy, UPSIDC Industrial Area, Naini, Allahabad-211010, U.P. India
  • Alok Mukerjee United Institute of Pharmacy, UPSIDC Industrial Area, Naini, Allahabad-211010, U.P. India
  • Paras Gupta United Institute of Pharmacy, UPSIDC Industrial Area, Naini, Allahabad-211010, U.P. India
  • Neha Srivastava Sam Higginbottom Institute of Agriculture Technology and Sciences, Naini, Allahabad-211007, U.P., India

Abstract

The National Institutes of Health defines osteoporosis as a skeletal disorder characterized by compromised bone strength predisposing to an increased risk of fracture. However, currently there is no definition that is agreeable to both medical and scientific communities and its etiology is poorly understood. It is within this framework that the pharmaceutical industry is trying to develop new treatments for the so-called silent epidemic. This research article describes the osteoporosis as a disease and look forward for the update in its management with an aim to synthesize precursors of antiosteoporotic agents and QSAR studies on EGFR receptor inhibitors.

References

Burge, R.T., Worley, D., Johansen, A. et al. (2001).

The cost of osteoporotic fractures in the UK:

projections for 2000–2020. J Drug Assessment 4:71–

Kanis, J., Brazier, J., Stevenson, M. et al. (2002).

Treatment of established osteoporosis: a systematic

review and cost-utility analysis. Health Tech

Assessment 6(29).

Lawrence, T.M., White, C.T., Wenn, R. et al. (2005).

The current hospital costs of treating hip fractures.

Injury 36:88–91.

Department of Health (2005). Hospital Episode

Statistics (England). http://www.hesonline (accessed

March 2006).

Elliot-Gibson, V., Bogoch, E.R., Jamal, S.A. et al.

(2004). Practice patterns in the diagnosis and

treatment of osteoporosis after a fragility fracture: a

systematic review. Osteoporos Int 15:767–78.

Brankin, E., Caroline, M. and Munro R (2005).

Closing the osteoporosis management gap in primary

care: a secondary prevention of fracture programme

Curr Med Res Opin 21:425–82.

Current Therapies for Osteoporosis 205 7. No

authors listed (1993). Consensus development

conference: diagnosis, prophylaxis,

and treatment of osteoporosis. Am J Med 94:646–50.

Faulkner, K.G. (2005). The tale of the T-score:

review and perspective. Osteoporos Int

:347–52.

Masud, T. and Francis, R.M. (2000). The increasing

use of peripheral bone densitometry. BMJ 321:396–8.

Stone, K., Seeley, D., Lui, L. et al. (2003). BMD at

multiple sites and risk of fracture of multiple types:

long-term results from the study of osteoporotic

fractures. J Bone Miner Res 18:1947–54.

Schuit, S.C.E., van der Klift, M., Weel, A.E.A.M. et al.

(2004). Fracture incidence and

association with bone mineral density in elderly men

and women: the Rotterdam Study. Bone 34:195–202.

Heaney, R.P. (2003). Is the paradigm shifting?

Bone 33:457–65.

Cauley, J.A., Seeley, D.G., Ensrud, K. et al. (1995).

Estrogen replacement therapy and fractures in older

women. Ann Intern Med 122:9–16.

Gallagher, J.C., Rapuri, P.B., Haynatzki, G. et al.

(2002). Effect of discontinuation of estrogen,

calcitriol, and the combination of both on bone

density and bone markers. J Clin Endocrinol Metab

:4914–23.

Writing Group for the Women’s Health Initiative

(2002). I. Risks and benefits of estrogen plus

progestin in healthy postmenopausal women:

principal results from the Women’s Health Initiative

randomized controlled trial. JAMA 288:321–33.

Anderson, G.L., Limacher, M., Assaf, A.R. et al.

(2004). Effects of conjugated equine estrogen in

postmenopausal women with hysterectomy: the

Women’s Health Initiative randomized controlled

trial. JAMA 291:1701–12.

Stefanick, M.L., Anderson, G.L., Margolis, K.L. et al.

(2006). Effects of conjugated equine estrogens on

breast cancer and mammography screening in

postmenopausal women with hysterectomy. JAMA

:1647–57.

Ettinger, B., Black, D.M., Mitlak, B.H. et al. (1999).

Reduction of vertebral fracture risk in

postmenopausal women with osteoporosis treated

Panacea Journal of Pharmacy and Pharmaceutical Sciences 2014:3(2);35-52

with raloxifene: results from a 3-year randomized clinical trial. JAMA 282:637–45. 19. Cummings, S.R., Eckert, S., Krueger, K.A. et al. (1999). The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. JAMA 281:2189–97. 20. Riggs, B.L. and Hartmann, L.C. (2003). Selective estrogen-receptor modulators— mechanisms of action and application to clinical practice. N Engl J Med 348:618–29. 21. Cauley, J.A., Norton, L., Lippman, M.E. et al. (2001). Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Breast Cancer Res Treat 65:125–34. 22. Barrett-Connor, E., Grady, D., Sashegyi, A. et al. (2002). Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. JAMA 287:847–57. 23. van Staa, T.P., Abenhaim, L. and Cooper, C. (1998). Use of cyclical etidronate and prevention of non-vertebral fractures. Rheumatology 37:87–94. 24. Department of Health (2005). Prescription Cost Analysis. http://www.ic.nhs.uk/pubs/prescostanalysis2005 [accessed 20 April 2006]. 25. Black, D.M., Cummings, S.R., Karpf, D.B. et al. (1996). Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–41. 26. Cummings, S.R., Black, D.M., Thompson, D.E. et al. (1998). Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280:2077–82. 27. Orwoll, E., Ettinger, M., Weiss, S. et al. (2000). Alendronate for the treatment of osteoporosis in men. N Engl J Med 343:604–10. 28. Saag, K.G., Emkey, R., Schnitzer, T.J. et al. (1998). Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med 339:292–9. 29. Rizzoli, R., Greenspan, S.L., Bone, G., 3rd et al.; The Alendronate Once Weekly Study Group (2002). Two-year results of once-weekly administration of alendronate 70 mg for the treatment of postmenopausal osteoporosis. J Bone Miner Res 17:1988–96. 30. Cranney, A., Wells, G., Willan, A. et al. (2002). II. Meta-analysis of alendronate for the treatment of postmenopausal women. Endocr Rev 23:508–16. 31. Bone, H.G., Hosking, D., Devogelaer, J.-P. et al. (2004). Ten years’ experience with alendronate for osteoporosis in postmenopausal women. N Engl J Med 350:1189–99.

Harris, S.T., Watts, N.B., Genant, H.K. et al. (1999). Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. JAMA 282:1344–52. 33. Reginster, J.Y., Minne, H.W., Sorensen, O.H. et al. (2000). Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Osteoporos Int 11:83–91. 34. Sorensen, O.H., Crawford, G.M., Mulder, H. et al. (2003). Long-term efficacy of risedronate: a 5-year placebo-controlled clinical experience. Bone 32:120–6. 35. Ste-Marie, L.G., Sod, E., Johnson, T. et al. (2004). Five years of treatment with risedronate and its effects on bone safety in women with postmenopausal osteoporosis. Calcif Tiss Int 75(6):469–76. 36. Mellstrom,D.D., Sorensen,O.H., Goemaere, S. et al. (2004). Seven years of treatment with risedronate in women with postmenopausal osteoporosis. CalcifTiss Int 75(6):462–8. 37. Cranney, A., Tugwell, P., Adachi, J. et al. (2002). III. Meta-analysis of risedronate for the treatment of postmenopausal osteoporosis. Endocr Rev 23:517–23. 38. Boonen, S., McClung, M.R., Eastell, R. et al. (2004). Safety and efficacy of risedronate in reducing fracture risk in osteoporotic women aged 80 and older: implications for the use of antiresorptive agents in the old and oldest old. JAm Geriatr Soc 52:1832–9. 39. Cohen, S., Levy, R.M., Keller, M. et al. (1999). Risedronate therapy prevents corticosteroid-induced bone loss: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, parallel-group study. Arthritis Rheum 42:2309–18. 40. Reid, D.M., Hughes, R.A., Laan, R.F.J.M. et al. (2000). Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. J Bone Miner Res 15:1006–13. 41. Wallach, S., Cohen, S., Reid, D.M. et al. (2000). Effects of risedronate treatment on bone density and vertebral fracture in patients on corticosteroid therapy. Calcif Tiss Int 67:277–85. 42. Harris, S.T., Watts, N.B., Li, Z. et al. (2004). Two-year efficacy and tolerability of risedronate once a week for the treatment of women with postmenopausal osteoporosis. Curr Med Res Opin 20:757–64. 43. Reid, D.M., Hosking, D., Kendler, D. et al. (2006). Alendronic acid produces greater effects than risedronic acid on bone density and turnover in postmenopausal women with osteoporosis: results of FACTS1-International. Clin Drug Invest 26:63–74. 44. Taggart, H., Bolognese, M.A., Lindsay, R.L. et al. (2002). Upper gastrointestinal safety of risedronate: a pooled analysis. Mayo Clinic Proc 77:262–70. 45. Chesnut, C., 3rd, Skag, A., Christiansen, C. et al. (2004). Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19:1241–9.

Panacea Journal of Pharmacy and Pharmaceutical Sciences 2014:3(2);35-52

Adami, S., Felsenberg, D., Christiansen, C. et al. (2004). Efficacy and safety of ibandronate given by intravenous injection once every 3 months. Bone 34:881–9. 47. Epstein, S., Delmas, P.D., Emkey, R. et al. (2006). Oral ibandronate in the management of postmenopausal osteoporosis: Reviewof upper gastrointestinal safety. Maturitas 54:1–10. 48. Neer, R.M., Arnaud, C.D., Zanchetta, J.R. et al. (2001). Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–41. 49. Rubin, M.R., Cosman, F., Cosman, F. et al. (2002). The anabolic effects of parathyroid hormone. Osteoporos Int 13:267–77. 50. Jiang, Y., Zhao, J.J., Mitlak, B.H. et al. (2003). Recombinant human parathyroid hormone (1–34) [Teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–41. 51. Ettinger, B., San Martin, J., Crans, G. et al. (2004). Differential effects of Teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res 19:745–51. 52. Lane, N.E., Sanchez, S., Modin, G.W. et al. (1998). Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J Clin Invest 102:1627–33. 53. Orwoll, E.S., Scheele, W.H., Paul, S. et al. (2003). The effect of teriparatide [Human Parathyroid Hormone (1–34)] therapy on bone density in men with osteoporosis. J Bone Miner Res 18:9–17. 54. Marie, P.J., Ammann, P., Boivin, G. et al. (2001). Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tiss Int 69:121–9. 55. Marie, P.J. (2005). Strontium ranelate: a novel mode of action optimizing bone formation and resorption. Osteoporos Int 16:S7–S10. 56. Nielsen, S.P., Slosman, D., Sorensen, O.H. et al. (1999). Influence of strontium on bone mineral density and bone mineral content measurements by dual X-ray absorptiometry. J Clin Densitom 2:371–9. 57. Meunier, P.J., Roux, C., Seeman, E. et al. (2004). The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–68. 58. Reginster, J.Y., Seeman, E., DeVernejoul, M.C. et al. (2005). Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausalwomen with osteoporosis: treatment of peripheral osteoporosis (TROPOS) study. J Clin Endocrinol Metab 90:2816 22. 59. Roux, C., Reginster, J.-Y., Fechtenbaum, J. et al. (2006). Vertebral fracture risk reduction with strontium ranelate in women with postmenopausal osteoporosis is independent of baseline risk factors. J Bone Miner Res 21:536–42.

Committee for Proprietary Medicinal Products (CPMAP). European Public Assessment Report. Protelos: scientific discussion [online] http://www.emea.eu.int/ humandocs/PDFs/EPAR/protelos/121604en6.pdf (accessed 18 April 2006). 61. Heaney, R.P. (2000). Calcium, dairy products and osteoporosis. J Am Coll Nutr 19:83S–99. 62. Dawson-Hughes, B., Harris, S.S., Krall, E.A. et al. (1997). Effect of calcium and vitamin D supplementation on bo ne density in men and women 65 years of age or older. N Engl J Med 337:670–6. 63. Cumming, R.G. and Nevitt, M.C. (1997). Calcium for prevention of osteoporotic fractures in postmenopausal women. J Bone Miner Res 12:1321–9. 64. Department of Health (1998). Nutrition and bone health: with particular reference to calcium and vitaminD. Report on Health and Social Subjects, 49. London: Department of Health. 65. Porthouse, J., Cockayne, S., King, C. et al. (2005). Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care. BMJ 330:1003–6. 66. The Record Trial Group (2005). Oral vitamin D3 and calcium for secondary prevention of low-trauma fractures in elderly people (Randomised Evaluation of Calcium Or vitamin D, RECORD): a randomised placebo-controlled trial. Lancet 365:1621–8. 67. Jackson, R.D., LaCroix, A.Z., Gass, M. et al. (2006). Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354:669–83. 68. Michaelsson, K., Melhus, H., Bellocco, R. et al. (2003). Dietary calcium and vitamin D intake in relation to osteoporotic fracture risk. Bone 32:694–703. 69. Avenell, A., Gillespie, W., Gillespie, L. et al. (2005). Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. The Cochrane Database of Systematic Reviews Issue 3. CD000227. 70. Prince, R.L., Devine, A., Dhaliwal, S.S. et al. (2006). Effects of calcium supplementation on clinical fracture and bone structure: results of a 5-year, double blind, placebo controlled trial in elderly women. Arch Intern Med 166:869–75. 71. Brennan, J., Johansen, A., Butler, J. et al. (2003). Place of residence and risk of fracture in older people: a population-based study of over 65-year-olds in Cardiff. Osteoporos Int 14:515–19. 72. Cali, C.M. and Kiel, D.P. (1995). An epidemiologic study of fall-related fractures among institutionalized older people. J Am Geriatr Soc 43:1336–40. 73. Chapuy, M.C., Arlot, M.E., Duboeuf, F. et al. (1992). Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Engl J Med 372:1637–42. 74. Chapuy, M.C., Arlot, M.E., Delmans, P.D. et al. (1994). Effect of calcium and cholecalciferol treatment for three years on hip fractures in elderly women. BMJ 308:1081–2.

Panacea Journal of Pharmacy and Pharmaceutical Sciences 2014:3(2);35-52

Lilliu, H., Pamphile, R., Chapuy, M.-C. et al. (2003). Calcium-vitamin D3 supplementation is cost-effective in hip fractures prevention. Maturitas 44:299–305. 76. Lips, P., Graafmans, W.C., Ooms, M.E. et al. (1996). Vitamin D supplementation and fracture incidence in elderly persons: a randomized, placebo-controlled clinical trial. Ann Intern Med 124:400–6. 77. Flicker, L., MacInnis, R.J., Stein, M.S. et al. (2005). Should older people in residential care receive vitamin D to prevent falls? Results of a randomized trial. J Am Geriatr Soc 53:1881–8. 78. Bischoff-Ferrari, H.A., Willett, W.C., Wong, J.B. et al. (2005). Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293:2257–64. 79. Dawson-Hughes, B., Heaney, R.P., Holick, M.F. et al. (2005). Estimates of optimal vitamin D status. Osteoporos Int 16:713–16. 80. MacLaughlin, J. and Holick, M.F. (1985). Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76:1536–8. 81. Holick, M.F., Siris, E.S., Binkley, N. et al. (2005). Prevalence of vitamin D inadequacy among postmenopausal North American women receiving osteoporosis therapy. J Clin Endocrinol Metab 90:3215–24. 82. Simonelli, C., Weiss, T.W., Morancey, J. et al. (2005). Prevalence of vitamin D inadequacy in a minimal trauma fracture population. Curr Med Res Opin 21:1069–74. 83. Seton, M., Jackson, V., Lasser, K.E. et al. (2005). Low 25-hydroxyvitamin D and osteopenia are prevalent in persons _ 55 yr with fracture at any site: a prospective, Current Therapies for Osteoporosis 209 observational study of persons fracturing in the community. J Clin Densitom 8:454–60. 84. Dixon, T., Mitchell, P., Beringer, T. et al. (2006). An overview of the prevalence of 25-hydroxy-vitamin D inadequacy amongst elderly patients with or without fragility fracture in the United Kingdom. Curr Med Res Opin 22:405–15. 85. Bischoff-Ferrari, H.A., Orav, E.J. and Dawson-Hughes, B. (2006). Effect of cholecalciferol plus calcium on falling in ambulatory older men and women: a 3-year randomized controlled trial. Arch Intern Med 166:424–30. 86. Youm, T., Koval, K.J. and Kummer, F.J., Zuckerman, J.D. (1999). Do all hip fractures result from a fall? Am J Orthop 28:190–4. 87. Royal College of Physicians and the Bone and Tooth Society of Great Britain (2000). Osteoporosis. Clinical guidelines for prevention and treatment. Update on pharmacological interventions and an algorithm for management. London: Royal College of Physicians.

Scottish Intercollegiate Guidelines Network (2003). Management of osteoporosis: National clinical guideline 71. http://www.sign.ac.uk/guidelines/fulltext/71/index.html (accessed 7 April 2006). 89. Department of Health (2001). National Service Framework for Older People. London: Department of Health. 90. Tilyard, M.W., Spears, G.F., Thomson, J. et al. (1992). Treatment of postmenopausal osteoporosis with calcitriol or calcium. N Engl J Med 326:357–62.

National Institute for Health and Clinical Excellence (2005). Bisphosphonates (alendronate, etidronate, risedronate), selective oestrogen receptor modulators (raloxifene) and parathyroid hormone (teriparatide) for the secondary prevention of osteoporotic fragility fractures in postmenopausal women. Technology appraisal guidance 87. London: NICE. Available at http://www.nice.org.uk/page=aspx?o=TA087guidance accessed 23/11/06 92. Tinetti, M.E., Speechley, M. and Ginter, S.F. (1988). Risk factors for falls among elderly persons living in the community. N Engl J Med 319:1701–7. 93. Pluijm, S., Smit, J., Tromp, E. et al. (2006). A risk profile for identifying communitydwelling elderly with a high risk of recurrent falling: results of a 3-year prospective study. Osteoporos Int 17:417–25. 94. Geusens, P., Autier, P., Boonen, S. et al. (2002). The relationship among history of falls, osteoporosis, and fractures in postmenopausal women. Arch Phys Med Rehabil 83:903–6. 95. Chang, J.T., Morton, S.C., Rubenstein, L.Z. et al. (2004). Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. BMJ 328:680. 96. Gillespie, L.D., Gillespie, W.J., Robertson, M.C. et al. (2003). Interventions for preventing falls in elderly people. The Cochrane Database of Systematic Reviews Issue 4. CD000340. 97. Feldstein, A., Elmer, P., Nichols, G. et al. (2005). Practice patterns in patients at risk for glucocorticoid-induced osteoporosis. Osteoporos Int 16:2168–74. 98. Aspray, T.J., Stevenson, P., Abdy, S.E. et al. (2006). Low bone mineral density measurements in care home residents—a treatable cause of fractures. Age Ageing 35:37–41.

Downloads

Published

2014-06-30

Issue

Section

Articles