SURFACE ENHANCED RAMAN SPECTROSCOPY

Dr. K. Bhavyasri, Ch. Dhana Lakshmi, R. Swethasri

Abstract


Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique that simultaneously combines fingerprint recognition capabilities, typical of vibrational spectroscopies, and very high sensitivity (down to single molecule), owing to the enhancement provided by plasmonic effects. SERS inherits the rich chemical fingerprint information on Raman spectroscopy and gains sensitivity by Plasmon-enhanced excitation and scattering. In particular, most Raman peaks have a narrow width suitable for multiplex analysis, and the measurements can be conveniently made under ambient and aqueous conditions. SERS applications in bio analysis involve the complex interactions of plasmonicnanomaterials with biological systems and their environments. We then introduce the current understanding of the interaction of nanomaterials with biological systems, mainly living cells, to guide the design of functionalized SERS nanoparticles for target detection. In the end, we give an outlook of the key challenges in bio analytical SERS, including reproducibility, sensitivity, spatial and time resolution.  The last section illustrates the applications of SERS in several fields of sensing, like the detection of chemical warfare agents, environmental pollutants, food contaminants, and illicit drugs; the use of SERS in art preservation, forensic science, and medical diagnosis.

Keywords: SERS, Plasmon’s, Enhancement, Nanoparticles, Resonance, Finger printing


Full Text:

PDF

References


R L McCrery et al, Raman Spectroscopy for Chemical Analysis, John Wiley, New York, 2000.

Z Qian et al, and B Ren et al, Encyclopaedia of Electrochemistry, P Unwin, A J Bard and M Strat Mann (Eds), Wiley-VCH, Wenham, Vol. (3), p.572, 2003.

Lin XM et al, Cui Y et al, Ren B et al, Tian ZQ (2009) Surface‐enhanced Raman spectroscopy: substrate‐related issues. Analytical and Bioanalytical Chemistry (394) p: 1729‐1745.

Schlucker S et al.(2009) SERS microscopy: nanoparticle probes and biomedical applications. Chemphyschem(10) p: 1344-1354.

Laurence TA et al, Braun G et al, Talley C et al, Schwartzberg A, Moskowitz M, et al. (2009) Rapid, Solution‐Based Characterization of Optimized SERS Nanoparticle Substrates. JACS (131) p: 162‐169.

Fleischmann M et al, Hendra PJ et al, McQuillan AJ et al. (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters (26) p: 163-166.

Hu J et al, Zhao B et al, Xu W et al, Li B, Fan Y (2002) Surface‐enhanced Raman spectroscopy study on the structure changes of 4‐mercaptopyridine adsorbed on silver substrates and silver colloids. SpectrochimicaActa Part A: Molecular and bio molecular Spectroscopy (58) p: 2827‐2834.

Stiles PL et al, Dieringer JA et al, Shah NC et al, Van Duyne RP (2008) Surface‐Enhanced Raman Spectroscopy. Annu Rev Anal Chem (Palo Alto Cal if) (1) p: 601‐626.

Zeman EJ et al, Schatz GC et al. (1987) An accurate electromagnetic theory study of surface enhancement factors for silver, gold, copper, lithium, sodium, aluminium, gallium, indium, zinc and cadmium. J PhyChem(91) p: 634‐643.

Pitarke JM et al, Silkin VM et al, Chulkov EV et al, Echenique PM (2007) Theory of surface Plasmon’s and surface Plasmon polaritons. Reports on Progress in Physics (70) p: 1‐87.

Baker GA et al, Moore DS et al. (2005) Progress in plasmonic engineering of surface‐enhanced Raman‐scattering substrates toward ultra‐trace analysis. Anal BioanalChem(382) p: 1751‐1770.

Soumik S et al, Chandra has N et al. (2012) Surface Enhanced Raman Spectroscopy of Proteins: Implications for Drug Designing. Nanomaterials and Nanotechnology (2) p: 1.

D A Long et al, Early History of Raman Effect; International Reviews of Physical Chemistry, Vol.7, p.317, 1988.

Albrecht et al, M. Grant et al; J. Alan Creighton et al. (1977). "Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode". Journal of the American Chemical Society. 99 (15) p: 5215–5217.

Cao et al, Jin et al, R.Mirkin et al, CA (2002). "Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection". Science. 297 (5586) p: 1536–1540.

Blackie et al, Evan J et al.; Le Ru et al, Eric C et al.; Etchegoin, Pablo G. (2009). "Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules". J. Am. Chem. Soc. 131 (40) p: 14466–14472.

Huang H et al, Shi H et al, Feng S et al, Lin J, Chen W. (2013) Quick detection of traditional Chinese medicine ‘Atractylodismacrocephalaerhizome' pieces by surface-enhanced Raman spectroscopy. Laser Phys(23) p: 15601-15604.

Saleh TA et al, MM Al-Shalalfeh et al, AA Al-Saadi et al. (2016) GrapheneDendrimer-stabilized silver nanoparticles for detection of methimazole using Surface-enhanced Raman scattering with computational assignment. Sci Rep (6) p: 32185.

Davies MC et al, Binns JS et al, Melia CD et al, Hendra PJ, Bourgeois D, et al. (1990) FT Raman spectroscopy of drugs in polymers. Int J Pharm (66) p: 223-232.

Saleh TA et al(2015) Detection: From Electrochemistry to Spectroscopy with Chromatographic Techniques, Recent Trends with Nanotechnology. Detection (2) p: 27-32.

Alshalalfeh M et al, Sohail M et al, Saleh T et al, Aziz M (2016) Electrochemical Investigation of Gold Nanoparticles-Modified Glassy Carbon Electrode and its Application for Ketoconazole Determination. Australian Journal of Chemistry (69) p: 1314-1320.

Saleh TA et al. (2016) Nanomaterials for Pharmaceuticals Determination. Bioenergetics (5) p: 226.

Alaqad K et al, Saleh TA et al. (2016) Gold and Silver Nanoparticles: Synthesis Methods, Characterization Routes and Applications towards Drugs. J Environ Anal Toxicol(6) p: 384.

Reilly TH et al, Corbman JD et al, Rowlen KL et al. (2007) Vapor Deposition Method for Sensitivity Studies on Engineered Surface-Enhanced Raman Scattering-Active Substrates. Anal Chem(79) p: 5078-5081.

Kneipp K et al, Kneipp H et al, Itzkan I et al, Dasari RR, Feld MS (1999) Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev (99) p: 2957-2976.


Refbacks

  • There are currently no refbacks.