A REVIEW ON BIOSENSOR

Authors

  • Sunita Sharma NRI Vidyadayani Institute of Science, Management and Technology, Bhopal, Madhya Pradesh, India

Abstract

As the potential danger of bioterrorism increments, there is extraordinary requirement for an instrument that can rapidly, dependably and precisely distinguish sullying bio-specialists in the environment. Biosensors can basically fill in as minimal effort and very proficient gadgets for this reason notwithstanding being utilized as a part of other dayto-day applications. A biosensor is a detecting gadget contained a mix of a particular organic component and a transducer. A "particular natural component" perceives a particular analyte and the adjustments in the biomolecule are generally changed over into an electrical flag (which is thus aligned to a particular scale) by a transducer. In this article we exhibit the rudiments of biosensing gadgets which can fill in as an initial instructional exercise for perusers who are new to this field. In this way we give abnormal state portrayals of a couple of delegate biosensors as contextual analyses, trailed by a concise exchange of the real troubles the biosensor inquire about groups regularly experience.

Keywords: Introduction, Biosensor, techniques, application

References

Khandpur, R. S. Handbook of biomedical instrumentation. Tata McGraw-Hill Education, 1992, 15-75.

Buerk, D. G. Biosensors: Theory and applications. Crc Press, 1995.

Newman, J. D., & Setford, S. J. (2006). Enzymatic biosensors. Molecular biotechnology, 32 (3), 249-268.

Koyun, A., Ahlatcıoğlu, E., & İpek, Y. K. Biosensors and Their Principles and Kahraman C. (2008). Fuzzy multi-criteria decision making: theory and applications with recent developments (Vol. 16) Springer.

Eggins, B. R. (2008). Chemical sensors and biosensors (Vol. 28). John Wiley & Sons.

Grieshaber, D., Mac Kenzie, R., Voeroes, J., & Reimhult, E. (2008). Electrochemical biosensors-Sensor principles and architectures. Sensors, 8 (3), 1400-1458.

Kumar, A. (2000). Biosensors based on piezoelectric crystal detectors: theory and application. JOM-e, 52 (10).

Martins, T. D., Ribeiro, A. C. C., de Camargo, H. S., da Costa Filho, P. A., Cavalcante, H. P. M., & Dias, D. L. (2013). New insights on optical biosensors: techniques, construction and application.

Strehlitz, B., Nikolaus, N., & Stoltenburg, R. (2008). Protein detection with aptamer biosensors. Sensors, 8 (7), 4296-4307.

Pohanka, M., & Skládal, P. (2008). Electrochemical biosensors–principles and applications. J Appl Biomed, 6(2), 57-64.

da Costa Silva, L. M., Melo, A. F., & Salgado, A. M. Biosensors for Environmental Applications.

Allain, L. R., Stratis-Cullum, D. N., & Vo-Dinh, T. (2004). Investigation of microfabrication of biological sample arrays using piezoelectric and bubble-jet printing technologies. Analytica chimica acta, 518 (1), 77-85.

Newman, J. D., & Setford, S. J. (2006). Enzymatic biosensors. Molecular biotechnology, 32 (3), 249-268.

Blum, L. J., & Coulet, P. R. Biosensor principles and applications, 1991.

Yoo, Eun-Hyung, and Soo-Youn Lee. "Glucose biosensors: an overview of use in clinical practice." Sensors 10.5 (2010): 4558-4576.

Croce RA, Jr, Vaddiraju S, Papadimitrakopoulos F, Jain FC. Theoretical Analysis of the Performance of Glucose Sensors with Layer-by-Layer Assembled Outer Membranes. Sensors. 2012; 12 (10): 13402-13416.

Parth Malik, Varun Katyal, Vibhuti Malik, Archana Asatkar, Gajendra Inwati, and Tapan K. Mukherjee, “Nanobiosensors: Concepts and Variations,” ISRN Nanomaterials, vol. 2013, Article ID 327435, 9 pages, 2013.

Rai, Mahendra, Gade, Aniket, Gaikwad, Swapnil, Marcato, Priscyla D., & Durán, Nelson. (2012). Biomedical applications of nanobiosensors: the state-of-the-art. Journal of the Brazilian Chemical Society, 23 (1), 14-24.

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532012000100004&lng=en&tlng=en.10.1590/S0103-50532012000100004 (Retrieved on December 03, 2014).

Yoo, E. H., & Lee, S. Y. (2010). Glucose biosensors: an overview of use in clinical practice. Sensors, 10 (5), 4558-4576.

Shtenberga, G., & Segalb, E. (2014). Porous Silicon Optical Biosensors.

Chambers, J. P., Arulanandam, B. P., Matta, L. L., Weis, A., & Valdes, J. J. (2008). Biosensor recognition elements. TEXAS UNIV AT SAN ANTONIO DEPT OF BIOLOGY.

Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature immunology, 11 (5), 373-384.

Zhang, X., Ju, H., & Wang, J. (Eds.). (2011). Electrochemical sensors, biosensors and their biomedical applications. Academic Press.

Valgimigli, F., Mastrantonio, F., & Lucarelli, F. (2014). Blood Glucose Monitoring Systems. In Security and Privacy for Implantable Medical Devices (pp. 15-82). Springer New York.

Heise, H. M., Marbach, R., Koschinsky, T., & Gries, F. A. (1994). Multicomponent assay for blood substrates in human plasma by mid-infrared spectroscopy and its evaluation for clinical analysis. Applied Spectroscopy, 48 (1), 85-95.

Park, S., Boo, H., & Chung, T. D. (2006). Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta, 556 (1), 46-57.

Vasylieva, N. (2013). Implantable microelectrode biosensors for neurochemical monitoring of brain functioning (Doctoral dissertation, ETH Zurich).

Henry, C. (1998). Getting under the skin: implantable glucose sensors. Analytical chemistry, 70 (17), 594A-598A.

Abad, J. M., Vélez, M., Santamaría, C., Guisán, J. M., Matheus, P. R., Vázquez, L., Fernández, V. M. (2002). Immobilization of peroxidase glycoprotein on gold electrodes modified with mixed epoxy-boronic acid monolayers. Journal of the American Chemical Society, 124 (43), 12845-12853.

Huang, S. (2011). Glucose Biosensor Using Electrospun Mn2O3-Ag Nanofibers.

Toghill, K. E., Compton, R. G. (2010). Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci, 5 (9), 1246-1301.

Downloads

Published

2017-06-09

Issue

Section

Review Article