

PAEDIATRIC ENCEPHALITIS & AES: AN INTEGRATIVE REVIEW WITH A HOMOEOPATHIC ADVANTAGE

*Dr Summaiya Arbaz Ayesha¹, Dr Mohammed Irfan², Dr Eruventy Harsha Priya¹

¹P G Department of Paediatrics JIMSHMC

²Guide & Head of the Department of Paediatrics JIMSHMC

*Corresponding Author's Email ID: summaiya26494@gmail.com

Abstract

Encephalitis and Acute Encephalitis Syndrome (AES) represent major paediatric neurological emergencies with high morbidity, particularly in tropical countries such as India. Viral pathogens—most commonly herpes simplex virus (HSV), enteroviruses, arboviruses (Japanese encephalitis), and post-infectious immune causes—constitute the major etiological categories. Early recognition, cerebrospinal fluid (CSF) evaluation, neuroimaging, EEG studies, and prompt initiation of antiviral and immunomodulatory therapy remain central to improving outcomes. Homoeopathy demonstrates applicability across all stages of Acute Encephalitis Syndrome from acute symptom modulation to post-encephalitic recovery and population-level prophylaxis when integrated ethically with institutional medical care. Remedies such as **Belladonna**, **Helleborus**, **Stramonium**, **Gelsemium**, **Apis mellifica**, **Cicuta**, **Hyoscyamus** and others, referenced in authoritative classical *materia medica*, correspond closely with encephalitic states. Emerging adjunctive clinical studies suggest potential benefits in symptom modulation and recovery quality. This review synthesizes current conventional evidence while highlighting the scope of homoeopathic therapeutics in the recovery continuum of paediatric encephalitis.

Keywords

Paediatric encephalitis; Acute Encephalitis Syndrome; Viral encephalitis; Diagnosis; Acyclovir therapy; MRI; IVIG; Homoeopathic management

Introduction

Encephalitis in children ranges from mild, self-limited illness to life-threatening disease-causing seizures, coma, and long-term neurocognitive sequelae. Diagnostic uncertainty is common: aetiology remains unidentified in a large proportion of cases despite extensive testing. Recent years have seen recognition of autoimmune encephalitis (notably anti-NMDA receptor encephalitis) and advances in molecular diagnostics that changed management paradigms. This review draws mainly on open-access paediatric infectious disease and neurology literature and major guideline documents.^{1,2,4}

Epidemiology

The incidence of acute encephalitis in children varies by geography, surveillance definition and season. In high-income settings, estimated rates historically ranged ~5–10 per 100,000 children/year but vary widely; regionally important pathogens (e.g., Japanese encephalitis, scrub typhus, arboviruses) increase incidence in endemic areas. Recent systematic and population studies emphasize that aetiological yield is improving with PCR and antibody testing but remains incomplete in many series. Autoimmune causes are increasingly detected and account for a growing share of previously “unknown” cases.^{3,5,8,9}

Etiology

Major categories:

- **Viral:** HSV-1 (important and treatable), enteroviruses, arboviruses (Japanese encephalitis, West Nile, etc.), varicella zoster, measles (where not well controlled).
- **Bacterial/rickettsial/parasitic:** less common as primary encephalitis but may cause encephalopathy or focal CNS infection; in some regions (e.g., South Asia) scrub typhus and other bacterial agents are notable causes of acute encephalitis syndrome (AES).
- **Autoimmune/paraneoplastic:** anti-NMDAR encephalitis is the most commonly recognized paediatric autoimmune encephalitis; others include anti-LGI1, anti-GABA, MOG-associated disorders, and postinfectious ADEM (acute disseminated encephalomyelitis).
- **Metabolic/toxic/iatrogenic:** mitochondrial and metabolic encephalopathies, toxins, and medication effects may mimic encephalitis.
- Etiologic distribution varies substantially between high- and low-resource settings and between seasons/regions (e.g., JE-endemic areas). Prompt testing for HSV and

autoimmune antibodies is high-yield because these diagnoses are treatable and time-sensitive.^{4,6,16}

Pathophysiology

Encephalitis can result from direct pathogen invasion, immune-mediated mechanisms, or post-infectious demyelination. Major mechanisms include: (1) viral neuro invasion via hematogenous spread or retrograde axonal transport (e.g., HSV), causing direct neuronal cytopathy; (2) neuroinflammation driven by microglial and astrocyte activation with cytokine release (IL-1 β , TNF- α , IL-6) and BBB disruption; (3) excitotoxicity and oxidative injury leading to secondary neuronal loss; (4) antibody-mediated synaptic dysfunction in autoimmune encephalitides (e.g., anti-NMDAR antibodies causing receptor internalization and synaptic failure); and (5) perivenular demyelination in ADEM. Host genetic factors (e.g., defects in innate immunity) modify susceptibility and severity.¹⁰⁻¹³

Pathology reflects direct pathogen-mediated neuronal injury, immune-mediated synaptic dysfunction (autoantibodies), or secondary brain injury from systemic inflammation, raised intracranial pressure, hypoxia and metabolic derangements. Autoantibody-mediated encephalitides often disrupt receptor function (e.g., anti-NMDAR) producing psychiatric symptoms, seizures and movement disorders distinct from classic viral presentations. Understanding mechanism guides targeted therapies (antivirals versus immunotherapy).⁶

Clinical Presentation

Presentation is heterogeneous but commonly includes:

Fever and altered level of consciousness (confusion, lethargy, stupor, coma),
New-onset seizures (focal or generalized) or status epilepticus,
Focal neurologic deficits (less common than in encephalitis mimics),
Behavioral changes, hallucinations or acute psychiatric symptoms (prominent in some autoimmune forms like anti-NMDAR),
Headache, vomiting, irritability (in infants/young children) Rapid progression, seizures, or coma should prompt urgent evaluation and transfer to a setting able to provide neurocritical care.⁴

Diagnostic approach — practical algorithmic steps

- 1. Stabilize and assess:** airway, breathing, circulation; control seizures; manage raised intracranial pressure.

2. **Immediate tests:** CBC, electrolytes, glucose, liver/renal function, blood cultures, blood PCRs where relevant; urgent head CT if focal signs or to exclude mass effect before LP.
3. **Lumbar puncture (LP):** CSF cell count, glucose, protein; Gram stain/culture; PCR for HSV, enteroviruses, and regionally relevant viruses (e.g., JE) and bacteria; CSF autoimmune panels as clinically indicated. Early HSV PCR and empiric acyclovir are critical pending results.¹⁹
4. **Neuroimaging:** MRI brain with diffusion, FLAIR, and contrast is preferred; CT if MRI unavailable or unstable. Pattern recognition (e.g., temporal lobe hyperintensity for HSV; deep grey/cortical involvement in flavivirus; multifocal demyelination in ADEM) helps narrow causes.²⁰
5. **Electroencephalography (EEG):** assess for non-convulsive seizures, characteristic patterns (e.g., extreme delta brush in anti-NMDAR may be seen).²¹
6. **Autoimmune testing:** serum and CSF panel for neuronal autoantibodies when clinical features suggest (psychiatric features, movement disorder, subacute progression, negative infectious workup).¹⁰
7. **Additional testing:** metabolic screens, toxin panels, repeat/advanced CSF testing, and targeted serology per epidemiology (e.g., JE IgM, dengue). Timely sampling and communication with the lab (molecular panels, PCR, CSF antibody testing) greatly increase diagnostic yield.^{4,5,6}

Differential diagnosis

Meningitis (distinguish by clinical features and CSF)

Febrile seizures (simple febrile seizure vs encephalitis-associated seizure)

Metabolic encephalopathy (hypoglycaemia, inborn errors)

Intoxications and overdoses

Stroke or intracranial haemorrhage

Primary psychiatric disorder (in older children with predominantly behavioural changes—consider autoimmune causes) Consider coexisting processes (e.g., bacterial meningitis with cortical involvement).⁴

Management principles

Immediate care

Stabilize airway, breathing, circulation; treat seizures aggressively (benzodiazepines ± antiseizure drugs) and monitor for status epilepticus.

Empirical antimicrobial therapy: start **acyclovir** for presumed HSV encephalitis immediately (IV) while awaiting PCR (HSV is treatable and delay worsens outcomes). Empiric broad-spectrum antibiotics/antitubercular therapy should be considered if bacterial CNS infection cannot be excluded. Regional endemic pathogens (e.g., scrub typhus, JE) may require specific therapy or public health notification.

Supportive neurocritical care: temperature control, fluid/electrolyte management, intracranial pressure control, mechanical ventilation if indicated.^{4,7}

Targeted therapy

HSV encephalitis: IV acyclovir (dosing per weight/age) for recommended duration (commonly 14–21 days depending on response and CSF PCR).

Autoimmune encephalitis: prompt immunotherapy (first-line: high-dose corticosteroids ± IVIG ± plasmapheresis; second-line: rituximab or cyclophosphamide if refractory). Early treatment is associated with better outcomes—empiric immunotherapy may be considered when autoimmune cause is strongly suspected and infection has been reasonably excluded.

Other viruses: limited specific antivirals exist; management largely supportive except where specific antivirals are indicated (e.g., anti-dengue supportive care).

Region-specific: treat scrub typhus with doxycycline/azithromycin as indicated in AES algorithms where the pathogen is suspected/confirmed. Public health control (vaccination for JE) is preventive.^{6,7}

Prognosis and outcomes

Prognosis depends on Etiology (HSV and some autoimmune forms have potentially good recoveries if treated early), age, severity at presentation, and speed of intervention. Many survivors have long-term sequelae cognitive impairment, epilepsy, motor deficits, behavioural/psychiatric disorders requiring multidisciplinary rehabilitation (neurology, therapy, neuropsychology, education support). Early rehabilitation planning improves

functional outcomes. Epidemiologic cohorts show substantial morbidity; mortality remains nontrivial in severe cases.^{4,5}

Prevention and public health

Vaccination: measles, varicella, JE (in endemic areas) reduce certain causes of encephalitis. WHO emphasizes integrating JE vaccination where indicated.

Vector control and surveillance reduce arboviral encephalitis.

Timely recognition and reporting of AES clusters (particularly in resource-limited settings) permits public health intervention (e.g., mass vaccination campaigns, vector control). National AES guidelines (e.g., Indian AES guidelines) outline surveillance and management pathways.^{16,17}

Special considerations for low-resource settings

Use algorithmic approaches prioritizing stabilization, empiric acyclovir, basic CSF testing and empiric treatment for locally prevalent treatable causes (e.g., scrub typhus).

Where MRI or advanced labs are unavailable, rely on clinical syndromic management, referral pathways, and public health resources. National AES guidelines can guide triage and empiric therapy in endemic regions.¹⁵

Homoeopathic Perspective

Homoeopathy has historically been utilized as a supportive modality in the management of acute febrile and neurological conditions, including encephalitic presentations. Within the homoeopathic literature, the therapeutic approach emphasizes individualization, careful assessment of the totality of symptoms, and the principles outlined in the Organon of Medicine, particularly §5, §72–§73, and §210–§213, which describe acute miasmic expressions, febrile reactions, and neuropsychiatric alterations in disease states.²⁷ Within paediatric encephalitis, homoeopathy is strictly adjunctive and must not delay evidence-based emergency management, including antivirals, immunomodulators, anticonvulsants, neurocritical supportive care, and intensive monitoring.²⁸

Scope of Homoeopathy

The potential role of homoeopathy is mainly considered in:

- 1. Acute, post-acute, recovery phase, including:**

residual neurological deficits, behavioural disturbances, cognitive impairment, sleep disturbances, emotional dysregulation, acute and post-encephalitic seizures (under conventional control)

2. Symptom modification during hospitalization, such as:

irritability, agitation, photophobia, headache, fever patterns, delirium

3. Long-term rehabilitation, focusing on:

motor coordination, speech and learning delays, psychosocial adjustment issues²⁹

Homoeopathy Across the AES Continuum

1. Acute Phase (Alongside ICU / Emergency Care)

Objective: Symptom modulation, not pathogen eradication

- Addresses: intensity of fever, delirium and agitation, meningeal irritation, convulsive tendency (with anticonvulsants continued)
- CCRH position: Homoeopathy can be **adjunctive** along with, **stabilization and initiation of antivirals**^{23,38}

AES CCRH project reports and Organon §§72–73, emphasizing acute diseases as dynamic symptom expressions requiring individualized remedies²⁷.

2. Post-Acute Phase (Stabilization & Early Recovery)

Objective: Neurobehavioral stabilization

- Addresses: cognitive dullness, irritability, emotional lability, sleep disturbances, post-encephalitic weakness
- CCRH observations: Faster normalization of behaviour and sleep patterns, Improved caregiver-reported quality of recovery^{23,38}

3. Recovery & Rehabilitation Phase

Objective: Functional and neurodevelopmental restoration

- Addresses: learning difficulties, speech delay, motor incoordination, post-encephalitic epilepsy (under neurologist supervision)^{23,40}

CCRH and AYUSH-supported follow-up data emphasize the usefulness of **constitutional and miasmatic prescriptions** in long-term neurological rehabilitation.

4. Population-Level Prevention & Prophylaxis (JE-Endemic Areas)

CCRH has conducted **large-scale Homoeoprophylaxis programmes** during Japanese Encephalitis outbreaks using: **Genus epidemicus approach, Miasmatic prescription, Belladonna, Calcarea Carb, Tuberculinum (BCT)**⁴⁰

These programmes reported: reduced incidence rates in covered populations, good community acceptability, safety and feasibility as a public-health adjunct.

This positions homoeopathy not only as a **therapeutic add-on**, but also as a **preventive public-health tool** in endemic regions.

Homoeopathic Therapeutics

Homoeopathic therapeutics offer a unique, symptom-totality-based approach particularly suited to the **acute, post-acute and recovery phases**, where conventional medicine often has limited specific tools.

Based on classical *materia medica* and clinical repertoires, certain remedies are frequently indicated in encephalitic symptom clusters:

1. Belladonna — The Acute Congestive State

- Sudden high fever, hot skin, throbbing carotids
- Intense cerebral congestion
- Dilated pupils, photophobia
- Delirium with striking imagery
- Meningeal irritation^{24,25,30}

2. Stramonium — Post-Infectious Delirium & Night Terror States

- Fear of darkness, being alone, monstrous visions
- Violent delirium; shrieking
- Spasms, jerking, fright-induced behaviours^{25,31,32}

3. Helleborus Niger — Cognitive Slowing & Stupor

- Dullness, mental torpor
- Slow response, head rolling
- Pupillary changes
- Post-viral stuporous states³²

4. Gelsemium — Prostration with Neuromuscular Weakness

- Extreme weakness, trembling
- Drooping eyelids
- Dull headache
- Lack of coordination³⁰

5. Apis Mellifica — Cerebral Oedema Picture

- Shrill crying in infants
- Puffy eyelids, oedematous features
- Restless irritability, intolerance to heat

- Meningeal irritation³²

6. **Cicuta Virosa — Convulsive Phenomena**

- Opisthotonus
- Sudden violent convulsions
- Post-infectious spasmotic conditions^{24, 31}

7. **Hyoscyamus — Restlessness with Loquacious Delirium**

- Lascivious behaviour, silly laughter
- Mutters, picks at bedclothes
- Twitching, jerking^{25, 31}

Repertorial Approach

Frequently used repertorial rubrics (Kent and Boger-Boenninghausen's) include^{24,35}

- *Mind – delirium, violent*
- *Mind – stupor*
- *Mind – irritability; restlessness*
- *Mind – dullness; difficult concentration*
- *Extremities – paralysis; tremors*
- *Head – meningitis, inflammation, brain*
- *Convulsions – febrile; post-infectious*
- *Fever – remittent, high*
- *Generalities – weakness, prostration*

Conclusion

Paediatric encephalitis and Acute Encephalitis Syndrome remain conditions with substantial mortality and long-term morbidity despite advances in antiviral therapy, immunomodulation, and neurocritical care. While conventional medicine is indispensable in acute stabilization and etiological treatment, a significant therapeutic gap persists in addressing post-encephalitic neurobehavioral, cognitive, and functional sequelae.

Evidence from **CCRH-supported clinical studies**, combined with classical homoeopathic literature, indicates that **individualized homoeopathic medicines used as add-on therapy demonstrate applicability across all stages of AES**, from acute symptom modulation to long-term rehabilitation and community-level prophylaxis. When practised ethically, without delaying institutional care, homoeopathy may enhance quality of recovery, support neurodevelopmental outcomes, and offer cost-effective preventive strategies in endemic settings.

Acknowledgement

We gratefully acknowledge and extend our sincere thanks to the Director, Principal, PG Coordinator and faculty members of paediatrics department of JIMS Homoeopathic Medical College and Hospital for providing a supportive academic atmosphere, necessary resources and constant support, encouragement and insightful suggestions that facilitated the completion and publication of this article.

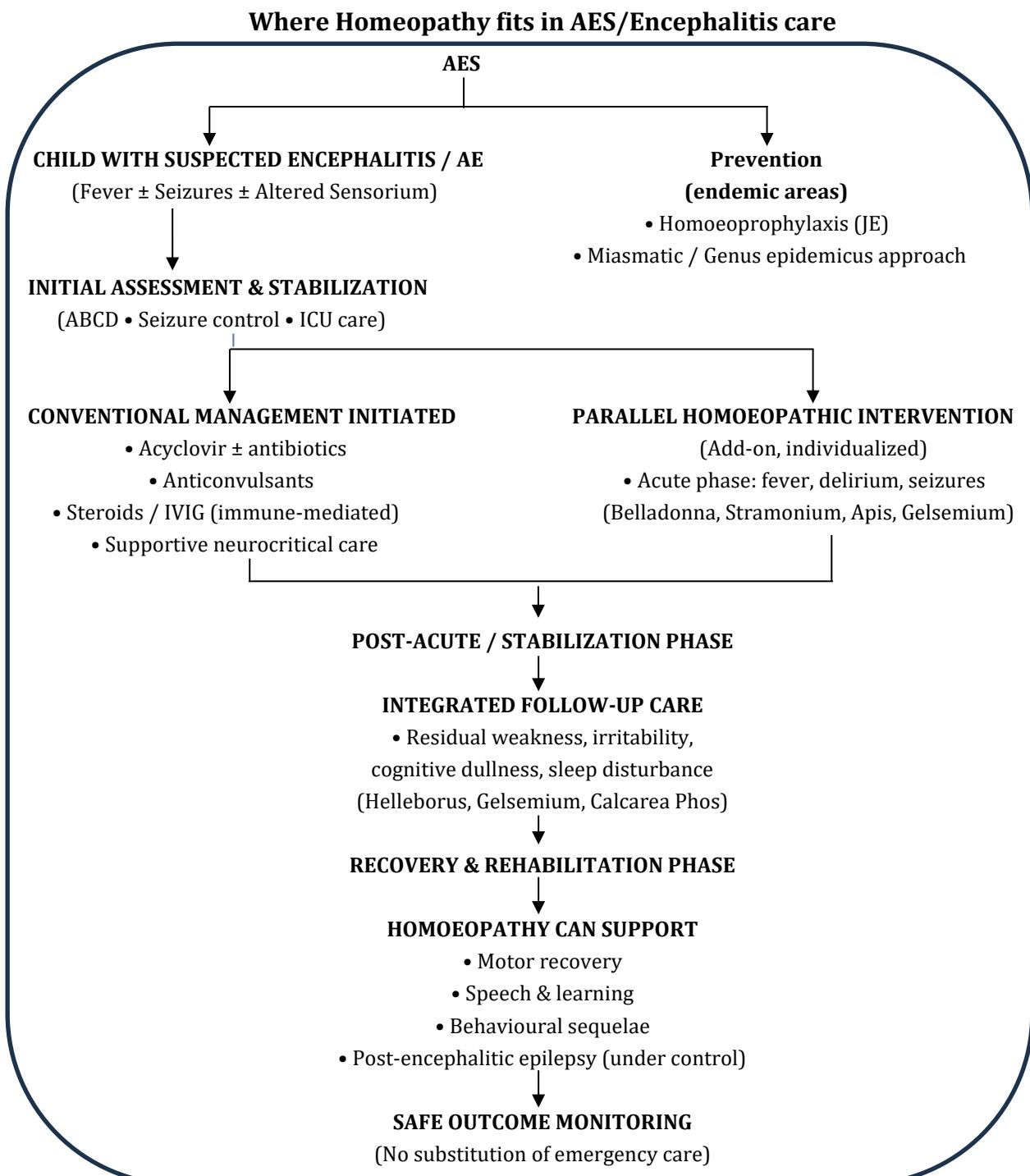


Figure 1. 27-28

References

1. Kliegman RM, St Geme JW, Blum NJ, Shah SS, Tasker RC, Wilson KM, editors. Nelson textbook of pediatrics. 21st ed. Philadelphia: Elsevier; 2020.
2. Cherry JD, Harrison GJ, Kaplan SL, Steinbach WJ, Hotez PJ, editors. Feigin and Cherry's textbook of pediatric infectious diseases. 8th ed. Philadelphia: Elsevier; 2019.
3. Indian Academy of Pediatrics. IAP guidelines on encephalitis and acute encephalitis syndrome (AES). New Delhi: Indian Academy of Pediatrics; 2018.
4. Messacar K, Fischer M, Dominguez SR, Tyler KL, Abzug MJ. Encephalitis in US children. Clin Infect Dis. 2017;65(9):1509–17. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC5801071/>
5. de Blauw I, et al. Epidemiology and etiology of severe childhood encephalitis. Front Pediatr. 2020;8:95. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC7182237/>
6. Garg D. Autoimmune encephalitis in children: an update. Indian Pediatr. 2020;57(9):805–13. Available from: <https://pubmed.ncbi.nlm.nih.gov/32727942/>
7. World Health Organization. Technical brief on encephalitis: diagnosis, treatment and care. Geneva: WHO; 2025 Feb 17.
8. Santoro JD, et al. Epidemiology of paediatric autoimmune encephalitis: a systematic review. Front Neurol. 2024;15:1289456. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC11262030/>
9. Titulaer MJ, McCracken L, Gabilondo I, et al. Treatment and prognostic factors for long-term outcome in patients with anti-NMDA receptor encephalitis. Lancet Neurol. 2013;12(2):157–65.
10. Dalmau J, Graus F. Autoimmune encephalitis update. Lancet Neurol. 2018;17(6):514–26.
11. StatPearls [Internet]. Viral encephalitis. Treasure Island (FL): StatPearls Publishing; 2023. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK470162/>
12. Brannagan J, et al. Early rehabilitation and outcomes in pediatric encephalitis. J Pediatr Rehabil Med. 2021;14(4):529–38.
13. Anilkumar AC. Acute disseminated encephalomyelitis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK430934/>

14. Pommier JD, et al. Childhood encephalitis in the Greater Mekong region. *Lancet Glob Health*. 2022;10(4):e511-21.
15. Indian Academy of Pediatrics. Consensus guidelines on evaluation and management of viral encephalitis. *Indian Pediatr*. 2012;49:391-400.
16. World Health Organization. Japanese encephalitis: fact sheet. Geneva: WHO; 2024. Available from: <https://www.who.int/news-room/fact-sheets/detail/japanese-encephalitis>
17. Government of India. Guidelines for clinical management of acute encephalitis syndrome including Japanese encephalitis. New Delhi: Ministry of Health and Family Welfare; 2009 Aug. Available from: https://ncvbdcmohfw.gov.in/WriteReadData/l892s/Revised_guidelines_on_AES_JE.pdf
18. Granerod J, Ambrose HE, Davies NW, et al. Causes of encephalitis and differences in their clinical presentations in England. *Clin Infect Dis*. 2010;51(12):1360-7.
19. Whitley RJ, Gnann JW. Viral encephalitis: guidance on acyclovir therapy. *Clin Infect Dis*. 2002;34(10):1541-7.
20. Khandaker G, et al. MRI patterns in paediatric encephalitis: diagnostic implications. *Pediatr Radiol*. 2018;48(10):1413-25.
21. Gaspar N, Hirsch LJ. EEG in the diagnosis of encephalitis and autoimmune encephalopathies. *Clin Neurophysiol*. 2015;126(4):645-52.
22. Nosadini M, Mohammad SS, Ramanathan S, Brilot F, Dale RC. Immune therapy in autoimmune encephalitis: a systematic review. *Eur J Paediatr Neurol*. 2017;21(3):450-63.
23. Oberai P, et al. Effectiveness of homeopathic medicines as add-on to institutional management protocol for acute encephalitis syndrome in children. *Homeopathy*. 2018;107(3):161-71. doi:10.1055/s-0038-1656715.
24. Boericke W. Pocket manual of homoeopathic materia medica. 9th ed. New Delhi: B Jain Publishers; 2003.
25. Dewey WA. Essentials of homoeopathic materia medica and homoeopathic pharmacy. New Delhi: B Jain Publishers; Chapter III.
26. Homeobook.com. Pharmacological action-trios of delirium remedies in homoeopathy: Belladonna–Stramonium–Hyoscyamus. Available from: <https://www.homeobook.com/>

27. Hahnemann S. *Organon of medicine*. 6th ed. New Delhi: B Jain Publishers; 1982.
28. Newton CR, Garcia HH. Epilepsy in poor regions of the world. *Lancet*. 2012;380(9848):1193-201.
29. International League Against Epilepsy. Neurocognitive outcomes after acute encephalitis. *ILAE Guidelines*; 2019.
30. Allen HC. *Keynotes and characteristics with comparisons*. New Delhi: B Jain Publishers; 2002.
31. Kent JT. *Lectures on homoeopathic materia medica*. New Delhi: B Jain Publishers; 1980.
32. Clarke JH. *A dictionary of practical materia medica*. Vol 2. New Delhi: B Jain Publishers; 2005.
33. Boger CM. *Synoptic key of the materia medica*. New Delhi: B Jain Publishers; 1999.
34. Kent JT. *Repertory of the homoeopathic materia medica*. New Delhi: B Jain Publishers; 2008.
35. Boger CM. *Boenninghausen's characteristics and repertory*. New Delhi: B Jain Publishers; 2010.
36. National Center for Complementary and Integrative Health. *Homeopathy: an overview*. Bethesda (MD): National Institutes of Health; 2016.
37. Lamba CD, Gupta VK, van Haselen R, et al. Evaluation of individualized homoeopathy in childhood epilepsy. *Homeopathy*. 2022;111(3):132-40.
38. Central Council for Research in Homoeopathy. *Annual report on AES research projects 2023-2024*. New Delhi: Ministry of AYUSH; 2024.
39. Central Council for Research in Homoeopathy. *Homoeoprophylaxis in Japanese encephalitis: field studies and observational reports*. New Delhi: Ministry of AYUSH; 2015.
40. Central Council for Research in Homoeopathy. *An open observational study on efficacy of miasmatic prescription in prevention of Japanese encephalitis*. *Homeopathy*. 2014;103(1):78-9. doi:10.1016/j.homp.2013.10.036.