FORMULATION AND EVALUATION OF METOPROLOL TARTRATE NASAL MUCOADHESIVE MICROSPHERES

Adidev Bharti¹, Rashmi Dahima*²

¹School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhinagar, Bhopal, India.
²School of Pharmacy, Devi Ahilya Vishwavidyalaya, Ring Road, Indore, India.

**Article Info**

Article history:
Received: 8 Sep 2014
Received in revised form: 15 Sep 2014
Accepted: 18 Sep 2014
Available online: 31st Dec 2014

*Corresponding Author
Dr. Rashmi Dahima

Address:
School of Pharmacy,
Devi Ahilya Vishwavidyalaya,
Indore.
E-mail:
dahimarashmi@rediffmail.com

Authors has no conflict of interest to declare

**Abstract**

Solid biodegradable mucoadhesive microspheres incorporating a drug dispersed or dissolved throughout particle matrix have the potential for the controlled release of the drug. Solid biodegradable mucoadhesive microspheres of chitosan containing metoprolol tartrate were prepared by ionic precipitation method. The aim of present work is to provide quick relief and sustained action of drug for prolong period of time by administration through nasal route as suspension which is beneficial over conventional enteric coated tablet system because it protect the drug from gastric environment and releases drug in systemic circulation at controlled rate. The effects of different factors (chitosan concentration, acetic acid concentration, stirring rate, gluteraldehyde concentration and tween 80 concentration) on microsphere size and encapsulation efficiency were studied. The prepared microspheres were evaluated for particle size distribution, surface morphology and entrapment efficiency. Maximum entrapment was found to be 94.19±0.015 %. The maximum release was 97.88±0.02 % within 18 hr for optimized formulation in phosphate buffer solution (pH 7.0) which shows sustained release of dosage form. So microsphere of chitosan can be successfully prepared and delivered by nasal route.

**Keywords** Metoprolol Tartrate, Nasal drug delivery, Bioadhesive Microspheres, Chitosan Microsphere
Introduction

Hypertension, also called silent killer, is a well established risk factor for coronary artery disease. In the year 2001, hypertension was the most common primary diagnosis made by the office based physicians in USA and it has been estimated to cause 4.5 % of the current global disease burden.

Metoprolol is a selective β₁ receptor blocker used in treatment of several diseases, especially hypertension. The active substance metoprolol is employed either as metoprolol succinate or as metoprolol tartrate. The tartrate is an immediate-release and the succinate is an extended-release formulation.[1] Metoprolol is used for a number of conditions including: hypertension, angina, acute myocardial infarction, supraventricular tachycardia, ventricular tachycardia, congestive heart failure, and prevention of migraine headaches.[2] Common side effects include: trouble sleeping, fatigue, feeling faint, abdominal discomfort. It needs to be used carefully in those with liver problem.[2, 3] Metoprolol was first made in 1969.[2]

Chitosan is a linear polysaccharide composed of randomly distributed β-(1-4)-linked D-glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit).[4] In medicine, it may be useful in bandages to reduce bleeding and as an antibacterial agent; it can also be used to help deliver drugs through the skin.[5] Chitosan's properties also allow it to be used in transdermal drug delivery; it is mucoadhesive in nature, reactive and most importantly, has a positive charge under acidic conditions. Lack of a positive charge means chitosan is insoluble in neutral and basic environments. [6] However, in acidic environments, protonation of the amino groups leads to an increase in solubility. The implications of this are very important to biomedical applications.

Among mucosal sites, the nasal route of administration has gained in interest. The large absorptive surface and high vascularity of the nasal mucosa ensure a rapid absorption of compounds under circumvention of the hepatic first pass elimination. Particles less than 1µm will escape to the lungs, whereas particles larger than 10µm will deposit in the nasal mucus membrane, with larger ones depositing more anteriorly.

The aim of this work was to develop bioadhesive microspheres for nasal delivery of hydrophilic model drug Metoprolol tartrate. The purpose of work is to apply
theory and practice of microspheres in pharmaceutical controlled drug delivery system, to enhance the activity of drug in comparison to available other marketed formulation.

**Experimental**

**Materials**

Metoprolol Tartrate and Chitosan were obtained as gift samples from Aristo Pharmaceutical Ltd, Bhopal and Central Institute of Fisheries Technology, Kochi respectively. All other chemicals used were of analytical grade.

**Method**

The microsphere system was prepared by ionic precipitation and chemical cross linking method. \(^7\) A specific amount of chitosan was dissolved in 100 ml of 2% v/v acetic acid solution. To the above solution 1% v/v Tween-80 was added with constant stirring. Then sodium sulphate (20% w/v) solution was added drop wise during the stirring process, until uniform turbidity was observed. To this, 1% w/v cross linking agent, glutaraldehyde was added and solution was homogenized for additional 1.0 hour to stabilize the microspheres. Now the microsphere suspension was centrifuged at 3000 rpm for 15 minutes and microspheres were collected. The microspheres were washed twice with distilled water and freeze-dried.

**Characterization**

**Particle size and particle size distribution**

The particle size and surface morphology were determined with the help of optical microscope and particle size analyzer. The drug loaded microspheres were suspended in distilled water for size distribution analysis with the help of Malvern instrument Ltd U.K, Zeta sizer ZS-90.

**Surface Morphology**

The morphology of the microspheres was determined by observation on a fluorescent microscope. The samples were prepared in distilled water and mounted on glass slide to determine the morphology of microspheres with the help of Fluorescent microscope, Radical Rx Lr 3T.

**Entrapment Efficiency**

The entrapment efficiency of microsphere prepared by ionic precipitation technique was determined by using cooling centrifuge. The microsphere dispersions were centrifuged at 3,000 × g for 30 min in acetic acid solution. The clear supernatant was analyzed for metoprolol tartrate by UV-spectrophotometric method at 274 nm gives the amount of entrapped drug. The drug-loading efficiency was determined as the ratio between the analytical and theoretical drugs

\[
\% \text{ Drug entrapment} = \frac{\text{Mass of drug obtained in particles}}{\text{Mass of the drug used in formulation}} \times 100
\]
In Vitro Drug Release studies

In vitro drug release of the microsphere was performed in phosphate buffer solution (pH 7.0). For determination of drug release behavior of Chitosan microspheres, 10 mg of microspheres where suspended in small amount of PBS 7.0 solution. This suspension was placed in an egg membrane; suspend in beaker filled with 50 ml of PBS 7.0 release media (PBS). This solution was stirred at 100 rpm with magnetic stirrer at 37±1°C. Sink conditions were maintained during the drug dissolution study. Sampling was done at specific interval. At each sampling, 3 ml of the solution withdrawn and was replaced with fresh media .The drug concentration was measured at 274 nm using “Shimadzu 1700 UV/visible spectrophotometer” The analyses were performed in triplicate. The results are expressed as mean ± standard deviation (S.D.). The above drug release procedure was applied on the formulation for 18 hours.

Optimization of process variables

The preparation procedure was then optimized and validated. The preparation of chitosan microspheres involves following various process variables:

Effect of Acetic acid concentration

The concentration of acetic acid was varied from 1 % to 2.5 % and the effect of acetic acid concentration on entrapment efficiency was then studied.

Effect of Drug:Polymer ratio

Drug concentration was kept constant while its ratio with polymer was varied in the range of 0.5 to 2. The effect of drug polymer ratio on entrapment efficiency was then studied.

Effect of stirring speed

The stirring speed was varied from 2000 to 3500 rpm and the effect of stirring speed on entrapment efficiency was studied.

Effect of Glutaraldehyde

Similarly the effect of Glutaraldehyde concentration on entrapment efficiency was studied by varying the concentration in the range 0.8 % to 1.4 %.

Effect of Tween 80 concentration

The effect of Tween 80 concentration on entrapment efficiency was studied by varying the concentration in the range 0.8 % to 1.4 %.

Result

Spherical shaped microspheres of chitosan were observed with optical microscope. The entrapment efficiency was estimated after freeze-drying. On the basis of entrapment efficiency, acetic acid concentration, drug polymer ratio, stirring speed, gluteraldehyde concentration, and Tween 80 concentrations were optimized as in table 1, 2, 3, 4, and 5 respectively.
Table 1: Effect of Acetic Acid Concentration on the entrapment efficiency

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Acetic acid concentration (%)</th>
<th>% drug entrapment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>1.0</td>
<td>57.89±0.36</td>
</tr>
<tr>
<td>F2</td>
<td>1.5</td>
<td>69.41±0.54</td>
</tr>
<tr>
<td>F3</td>
<td>2.0</td>
<td>77.28±0.42</td>
</tr>
<tr>
<td>F4</td>
<td>2.5</td>
<td>73.65±0.46</td>
</tr>
</tbody>
</table>

Table 2: Effect of Drug : Polymer Ratio on the entrapment efficiency

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Drug : Polymer Ratio</th>
<th>% drug entrapment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>1: 0.5</td>
<td>47.47±0.89</td>
</tr>
<tr>
<td>F6</td>
<td>1: 1.0</td>
<td>75.83±1.37</td>
</tr>
<tr>
<td>F7</td>
<td>1: 1.5</td>
<td>79.29±0.53</td>
</tr>
<tr>
<td>F8</td>
<td>1: 2.0</td>
<td>64.84±0.37</td>
</tr>
</tbody>
</table>

Table 3: Effect of Stirring Speed on the entrapment efficiency

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Stirring speed (rpm)</th>
<th>% drug entrapment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F9</td>
<td>2000</td>
<td>63.24±0.14</td>
</tr>
<tr>
<td>F10</td>
<td>2500</td>
<td>70.14±0.17</td>
</tr>
<tr>
<td>F11</td>
<td>3000</td>
<td>77.28±0.43</td>
</tr>
<tr>
<td>F12</td>
<td>3500</td>
<td>80.74±0.26</td>
</tr>
</tbody>
</table>

Table 4: Effect of Glutaraldehyde Concentration on the entrapment efficiency

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Concentration of Glutaraldehyde (%)</th>
<th>% drug entrapment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F13</td>
<td>0.8</td>
<td>66.05±0.18</td>
</tr>
<tr>
<td>F14</td>
<td>1.0</td>
<td>77.29±0.42</td>
</tr>
<tr>
<td>F15</td>
<td>1.2</td>
<td>81.37±0.16</td>
</tr>
<tr>
<td>F16</td>
<td>1.4</td>
<td>75.05±0.18</td>
</tr>
</tbody>
</table>

Table 5: Effect of Tween 80 Concentrations on the Entrapment efficiency

<table>
<thead>
<tr>
<th>Formulation code</th>
<th>Concentration of Tween 80 (%)</th>
<th>% drug entrapment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F17</td>
<td>0.8</td>
<td>74.87±0.14</td>
</tr>
<tr>
<td>F18</td>
<td>1.0</td>
<td>81.01±0.04</td>
</tr>
<tr>
<td>F19</td>
<td>1.2</td>
<td>86.71±0.84</td>
</tr>
<tr>
<td>F20</td>
<td>1.4</td>
<td>94.19±0.015</td>
</tr>
</tbody>
</table>
So the maximum entrapment of drug was found to be 94.19±0.015 %. The average particle size of optimized formulation was found to be 1.897mm (Fig 1). Table 6 shows, the optimized formula for the final formulation.

Table 6: Optimized batch formula

<table>
<thead>
<tr>
<th>Drug to polymer ratio</th>
<th>1:1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of acetic acid</td>
<td>2.0% v/v</td>
</tr>
<tr>
<td>Speed of mechanical stirrer</td>
<td>3500rpm</td>
</tr>
<tr>
<td>Glutaraldehyde Concentration</td>
<td>1.2% w/v</td>
</tr>
<tr>
<td>Surfactant (Tween-80) Concentration</td>
<td>1.4 %v/v</td>
</tr>
</tbody>
</table>

The in vitro drug release observations were continuously made for 18 hr in PBS (Phosphate Buffer Saline) 7.0 medium. The maximum drug release of optimized formulation was found to be 97.88±0.02 % (Fig 2).

Figure 1: Particle size analysis of formulation

Figure 2: Cumulative % drug release of formulation
Discussion
The change in particle size was observed with some processing variables like concentration of chitosan, stirring speed and the concentration of emulsifier. It was shown that microsphere size decreased with increasing stirring rate since increased stirring results in the formation of smaller particle. In chitosan microspheres formulation, the increase in stirring rate will rapidly disperse the precipitating agent in solution. As shearing force increases, the size of microspheres decreases and the % drug entrapment increases. Glutaraldehyde differently influenced the microparticle sizes. Glutaraldehyde is probably able to interact with the amine groups of metoprolol tartrate, forming a complex that forms the microspheres. But the maximum influence was found to be with surfactant concentration. On increasing the concentration of surfactant, there was an increase in entrapment of drug. This was may be due to decrease in interfacial surface tension. 1.4 % v/v concentration of Tween-80 is suitable for maximum entrapment of drug. On increasing the concentration of polymer the rate of release of drug from chitosan microspheres decreased, because the thickness of polymer was increased and diffusion distance for drug to diffuse out from microspheres was increased.

Conclusion
Solid biodegradable microspheres incorporating a drug dispersed or dissolved throughout particle matrix have the potential for the controlled release of drug. Chitosan microspheres have excellent mucoadhesive properties. The electrostatic attraction between the positively charged mucoadhesive chitosan microspheres and negatively charged mucus glycoprotein plays an important role in the adsorption of mucin on chitosan microspheres and vice versa. Factors causing the reduction of this attraction would lead to a reduction in the adsorption. The utility and potential of microsphere drug delivery systems have been demonstrated and it has been shown that tailored delivery is possible.

Acknowledgment
The authors are highly thankful to Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal for providing necessary facilities and support.

Conflict of Interest
None

Reference
2. Carlsson, edited by Bo, Technological systems and industrial dynamics,


