A REVIEW ON TREATMENT OF CANCER BY NOVEL DRUG DELIVERY SYSTEM

Bhanupriya Taram*, Deepial Priya Bennett, Gyanesh Kumar Sahu

Shri Shankracharya Technical Campus, Shri Shankaracharya Group of Institution,
Faculty of Pharmaceutical Sciences, Junwani, Bhilai (C.G.)

*Corresponding Author's Email ID: Bhanupriya1910taram@gmail.com

ABSTRACT

Cancer is one of the most fatal diseases in all over the world. Due to which, many countries trying to implement various curable treatments for decades. Since last 20th century new improved methods and treatments were developed like chemotherapy and radiation therapy, which gives an effective result along with surgery. Medicines are also imparted with newly modern changes called as novel drugs and novel drug delivery system (NDDS). Novel drug delivery system (NDDS) is a new approach to gives improved form of medications with its therapeutic effects. This delivery system ease the overall treatment by providing targeted action, controlled release of active pharmaceutical ingredients with maintaining systemic circulations and enhance drugs therapeutic effects with dosage. It includes Microsphere, Nanoparticle, Dendrimer, Liposome, Niosome and Ethosome type of delivery system.

Keywords: -
Cancer, Novel drug delivery system (NDDS), Nanoparticle, Microsphere, Liposome, Niosome.
INTRODUCTION

Cancer is one of the complex structural diseases, happens by genetic modification which leads to the abnormal transformation of normal cells into cancerous tumours. Cancer mainly arises due to gene mutation causes uncontrolled growth of normal cells and leads to abnormal cell division and forms tumours, which spreads to other parts of the body [1]. Cancer is the result of collection of abnormalities of genes and genetics and epigenetic modifications [2]. Cancers are identified by uncontrolled growth of cells due to removal of control on important proteins and enzymes which are responsible for cell division and proliferation [3]. The main causes of cancer disease involves uncontrolled and excess use of drugs for long time, among which the most common cause called as nicotine dependence by using of tobacco containing products like (cigarette, cigar, pipe smoke etc.) they generally causes mouth cancer and lung cancer, excess using of alcohol increases the risk of cancers like (mouth, breast, bowel, pharyngeal cancer etc.), by infectious organisms and viruses like (papilloma virus, hepatitis B and hepatitis C virus etc.) , by improper unhealthy diet, by carcinogens and environmental toxins, hormone and immune conditions which ultimately contribute to cause cancer [4].

![Diagram of Novel Drug Delivery System acting on Cancer.](image-url)
Anticancer agents

Anticancer also called as anti-neoplastic agents, which are used to treat, prevent the development of cancer or inhibit the growth of malignant cancerous cells or tumours [5]. Anticancer drugs are categorized according to their mechanism of action as antimetabolites, purine and pyrimidine antagonists, an antibiotics, monoclonal antibodies, plant derivatives, biological agents, alkylating agents and hormonal agents [6].

Anticancer therapy

![Fig 2: Different types of Anticancer Therapy.](image)

One of the challenging target or goal in the cancer treatment is the proper removal of tumours from the body without any damage. The main strategy of this treatment is the selection of therapy according to the stage of cancer and tumour’s size. The treatment of cancer consists a combination of therapies, including surgery, chemotherapy, radiation therapy, and immunotherapy etc. The main purpose of all the treatment is to destroy the tumour cells to achieve tumour reduction without damaging normal cells [8].

1. Chemotherapy

In chemotherapy, anticancer drugs alone or with combinations are used to inhibit the growth or division of cancerous cells, it is known as the primary treatment and works on whole body also targets normal healthy cells and it is also a painful treatment [9]. Chemotherapy is a commonly used treatment in cancer in which a variety of drugs are used that reach almost all the body parts and in tissues and exert its action in both
malignant and normal cells which leads to create various types of adverse effects includes anaemia, fatigue, nausea and vomiting, hair loss, infertility etc [10].

Fig 3: - Chemotherapy in the Treatment of Cancer

2. Immunotherapy

Immunotherapy is mainly used treatment to restore the immune system of the whole body to fight against disease; it improves the natural defence system of the body. The main important checkpoint of immunotherapy is the adaptive immune system in cancer elimination [11]. The adaptive immune system comprises lymphocytes, both T-cells and B-cells. B-cells are involved in humoral immune response whereas T-cells involved in cell mediated immune responses. Both the cells have ability to compete immunogenic cancer [12].

Fig 4: - Immunotherapy in the Treatment of Cancer

3. Radiation therapy
Radiotherapy treatment uses high dose radiations to control or kill, slowing the growth or shrinking of cancerous cells [13]. Radiotherapy mainly consists of two therapies – tele therapy and brachy therapy [14].

![Fig 5: Radiation Therapy in the Treatment of Cancer](image)

4. Hormone therapy

Hormone therapy mainly uses hormones to treat and fight against cancer. Generally in breast cancer, hormone therapy shows great effectiveness along in combination with another therapies [15].

![Fig 6: Hormonal Therapy in the Treatment of Cancer](image)

5. Stem cell therapy
Stem cell therapy is the use of original cells of human beings to cure cancer. Stem cells have the ability/potential to repair the damaged cells of the body [16]. Cancer stem cells (CSCs) is a portion of tumour cells which have a potential of cell death, renewing cells and proliferative ability [17]. In other words, they have a capacity of regenerating cells and with increasing numbers. This was first documented by Bonnet and Dick [18].

6. Surgery

In cancer surgery, the cancerous cells or tumours are totally removed or cut out from the body to prevent spreading of tumour cells in the whole body. The only curative treatment for CRC is primary surgical removal [19].
7. Precision Medicine

Precision medicines are the treatment through which specific diseases are treated according to individual’s patient disease stage [20].

![Fig 9: Precision Medicines used in the Treatment of Cancer]

NOVEL DRUG DELIVERY SYSTEM

Novel drug refers to new, innovative or improved forms of drugs as compared to existing drugs. Novel drugs are differing from existing drugs by their improved therapeutic efficacy, complete bioavailability, fast action, which also improves patient compliance. Novel drug delivery system is an advanced technique of delivering medicines [21].
Novel drug delivery system is an advanced approach which is mainly designed to improve or alter the behaviour of active pharmaceutical ingredients [22]. It improves the physiological condition of the drugs to ease the proper distribution of medicines with desired efficacy and also minimize the drug loss or its degradation [23]. Novel drug delivery system are mainly used to enhance the therapeutic effect of any drug by providing a better physiological conditions, controlling drug release, maintaining systemic circulation, an their site of action [24]. Novel drug delivery system includes

1. Microspheres

Microspheres, also called as microparticles are hollow spheres [25]. Mainly made up of proteins or various synthetic polymers, to enhance the stability property of the drugs that can easily degraded in the body [26].

Fig 10: - Different Types of Novel Drug Delivery System.
Table 1: Example of Microspheres used in the treatment of cancer:-

<table>
<thead>
<tr>
<th>S.no</th>
<th>Polymer</th>
<th>Drug</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chitosan, PEG, N-/2-hydroxypropyl methacrylamide.</td>
<td>Doxorubicin</td>
<td>Decreasing the resistance of topoisomerase 2, tumour cells become resistant</td>
<td>27</td>
</tr>
<tr>
<td>2.</td>
<td>Polyurethane</td>
<td>Gefitinib</td>
<td>Inhibits the epidermal growth factor receptor by ATP binding sites of an enzyme</td>
<td>28</td>
</tr>
<tr>
<td>3.</td>
<td>Chitosan</td>
<td>Cisplatin</td>
<td>Kills cancer cells by binding to DNA</td>
<td>29</td>
</tr>
</tbody>
</table>

Table 2: Cited patents of Microsphere in anticancer:-

<table>
<thead>
<tr>
<th>S.no</th>
<th>Inventor</th>
<th>Current assignee</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Yan Chen, Bruce Nathaniel Gray</td>
<td>Sirtex Medical ltd</td>
<td>Controlled release preparation of cytotoxic or cytostatic drug</td>
<td>30</td>
</tr>
<tr>
<td>2.</td>
<td>Richard T. Liggins, Philip M. Toleikis, Dechi Guan</td>
<td>Angiotech International AG</td>
<td>Microparticles with high loadings of a Bioactive agent</td>
<td>31</td>
</tr>
<tr>
<td>3.</td>
<td>Katsutoshi Inoue, Tsutomu Yamashita, Kazuharu</td>
<td>Tanaka Kikinzoku Kogyo Kk</td>
<td>Antitumor agent containing chitosan microsphere and production there of</td>
<td>32</td>
</tr>
</tbody>
</table>
2. Nanoparticles

Nanoparticles are the nano-sized microscopic particles, in which the inner core is the active pharmaceutical ingredient and the drug is surrounded by a layer of polymer [33]. Nanoparticles behave as a whole body [34].

![Diagram of Nanoparticles](image)

Fig 12: Nanoparticles

Table 3: Examples of Nanoparticles used in the treatment of cancer:

<table>
<thead>
<tr>
<th>S.no</th>
<th>Polymer</th>
<th>Drug</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chitosan oligosaccharide</td>
<td>Indomethacin</td>
<td>Chemosensitizing effect, exhibit enhancement of cytotoxic effect</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Chitosan hydrochloride/hyaluronic acid</td>
<td>Mitoxantrone</td>
<td>Stability in physiological medium</td>
<td>36</td>
</tr>
</tbody>
</table>

Table 4: Cited patents of Nanoparticles in anticancer:

<table>
<thead>
<tr>
<th>S.no</th>
<th>Inventor</th>
<th>Current assignee</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ulagaraj Selvaraj, Grey.L.Messing</td>
<td>The penn state research foundation</td>
<td>Synthesisi of drug nanoparticle by spray drying</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>Stephen E.Zele, Miro Mukkaram Ali</td>
<td>Pfizer Inc</td>
<td>Cancer cell targeting using Nanoparticles</td>
<td>38</td>
</tr>
</tbody>
</table>
3. Liposomes

Liposomes are small spherical vesicles made up of phospholipids can be used to enclosed aqueous solutions, nutrients and other pharmaceutical drugs [39]. Liposome is a artificial spherical phospholipid bilayered membrane [40]. Liposomes carry a wide range of importance in drug delivery system due to its stability, biocompatibility and its membrane like property selectivity [41]. On the other hand all hydrophilic, lipophilic, peptides and other aqueous extracts can be encapsulated in phospholipid bilayer of liposome [42].

![Fig 13: Liposome](image)

Table 5: Examples of Liposomes used in the treatment of cancer:

<table>
<thead>
<tr>
<th>S.no</th>
<th>Polymer</th>
<th>Drug</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dipalmitoyl phosphate-dylcholine</td>
<td>5-fluorouracil</td>
<td>Interference with DNA synthesis and act as a thymidylate synthase inhibitor</td>
<td>43</td>
</tr>
<tr>
<td>2.</td>
<td>Alpha tocopherol polyethylene glycol 1000 succinate (TPGS)</td>
<td>Paclitaxel</td>
<td>Improving the solubility and effectively inhibiting p-gp mediated efflux</td>
<td>44</td>
</tr>
</tbody>
</table>
Table 6: Cited patents of Liposome in anticancer drugs:

<table>
<thead>
<tr>
<th>S.no</th>
<th>Inventor</th>
<th>Current Assignee</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Jun Yang, Stephen H.WU, Cliff J. Herman</td>
<td>Mallinckrodt.LLC</td>
<td>Combinational liposome composition for cancer therapy</td>
<td>45</td>
</tr>
<tr>
<td>2.</td>
<td>Murali Krishna Divi, George C Wood, M. Waleed Gaber</td>
<td>University of Tennehhee research foundation</td>
<td>Methods and compositions for inhibiting undesirable cellular proliferation by targeted liposome delivery of active agent</td>
<td>46</td>
</tr>
</tbody>
</table>

4. Niosomes

Niosomes are non-ionic surfactant microscopic vesicles consisting of bilayer structure with an aqueous core [47]. Niosomes were first introduced as a feature of cosmetic industry [48]. Nonionic surfactants are mainly used because of interfacial activity due to which hydrophilic and hydrophobic drugs are entrapped [49].

![Niosome Diagram](image-url)
Table 7: Examples of Niosomes used in the treatment of cancer: -

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Drug</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poly (methacyclic acid)</td>
<td>Tamoxifen</td>
<td>Modulates the estrogen receptor in breast cancer</td>
<td>50</td>
</tr>
</tbody>
</table>

Table 8: Cited patents of Niosome in anticancer: -

<table>
<thead>
<tr>
<th>Inventor</th>
<th>Current Assignee</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masahiko Ikekita, Taichi Matsunaga, Norimune Nagahara, Isamu Shiina</td>
<td>Tokyo university of science</td>
<td>Anticancer agent containing tamoxifen analogue as active ingredient</td>
<td>51</td>
</tr>
</tbody>
</table>

5. Ethosomes

Ethosomes are the multilayer phospholipid nanovesicles filled with alcohol (20-45%) [52]. Ethosomes differ with liposomes as it can effectively deliver both hydrophilic and lipophilic drugs through the stratum corneum into the deep layer of skin [53]. Hence ethosomes becomes an effective system for skin diseases [54]. It is used in skin related cancers called as melanoma [55].

![Ethosome Diagram](image-url)

Fig 15: - Ethosome
Table 9: Examples of Ethosomes used in the treatment of cancer:

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Drug</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxypropyl-methacrylamide</td>
<td>Paclitaxel</td>
<td>Enhanced permeability and retention effect</td>
<td>56</td>
</tr>
<tr>
<td>(HPMA)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10: Cited patents of Ethosome in anticancer:

<table>
<thead>
<tr>
<th>Inventor</th>
<th>Current Assignee</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramesh C. Pandey, Luben K. Yankov, Raghu Nair, Alex Pouley</td>
<td>Xechem International Inc</td>
<td>Preparation of brominated paclitaxel analogues and their use as effective antitumor agents</td>
<td>57</td>
</tr>
</tbody>
</table>

6. Dendrimers

Dendrimers are nanometer sized three dimensional branched structure macromolecules possess three distinctive layers core, branches and functional groups [58]. The effectiveness on targeting sites is achieved by attaching some targeting ligands at the external surface of dendrimers [59].

![Dendrimer Diagram](image)
Table 11: Examples of Dendrimers used in the treatment of cancer:

<table>
<thead>
<tr>
<th>Polymer</th>
<th>Drug</th>
<th>Outcome</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAMAM</td>
<td>Paclitaxel, doxorubicin</td>
<td>Improve the solubility</td>
<td>60</td>
</tr>
</tbody>
</table>

Table 12: Cited patents of Dendrimer in anticancer:

<table>
<thead>
<tr>
<th>Inventor</th>
<th>Current Assignee</th>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sang Van</td>
<td>Annam biosciences LLC</td>
<td>N-BOC- dendrimers and their conjugates</td>
<td>61</td>
</tr>
</tbody>
</table>

CONCLUSION:

“As the review has reveals” it is clear that; In this article, i am: focusing on Novel drug delivery system, the novelty of existing drugs imparts huge benefits in cancer treatment. Novel drug delivery system is designed to improve the physiological condition of drug and the behaviour of active pharmaceutical ingredients. It is mainly used to improve the therapeutic effect of drug with its controlled release and targeted action. It eases the overall problems in cancer treatment along with therapies in respect to therapeutic effects, controlled release, physiological behaviour and site of action. Some examples of novel drug delivery system and their active drug which are used in the treatment of cancer like- microspheres active drug: – (doxorubicin), nanoparticles active drug: - (indomethacin)

ACKNOWLEDGEMENT:-

Author would like to thank Shri Shankaracharya group of Institutes, Shri Shankaracharya technical campus, Shri Shankarachary faculty of Pharmaceutical sciences Junwani Bhilai, for providing chemicals and laboratories and for providing scientific ambience and environment.
REFERENCES:

14. Anon, Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and

